0%

BMS-BOCF analyzing (Part 2)

previous part

two-row BMS, PSS (\(\varepsilon_0\) ~ \(\mathrm{BO} = \psi(\Omega_\omega)\))

\(\varepsilon_0\) ~ \(\mathrm{CO} = \zeta_0\)

\(\varepsilon_0\) ~ \(\varepsilon_1\)

Using \(\forall \alpha< \varepsilon_0, \omega^\alpha= \psi(\alpha)\) in BOCF.

BMS BOCF NN
\(()(1,1)\) \(\psi(\psi_1(0))\) \(\varepsilon_0\)
\(()(1,1)()(1,1)\) \(\psi(\psi_1(0))2\) \(\varepsilon_0 2\)
\(()(1,1)(1)\) \(\psi(\psi_1(0)+1)\) \(\omega^{\varepsilon_0+1}\)
\(()(1,1)(1)(1)\) \(\psi(\psi_1(0)+2)\) \(\omega^{\varepsilon_0+2}\)
\(()(1,1)(1)(2)\) \(\psi(\psi_1(0)+\omega)\) \(\omega^{\varepsilon_0+\omega}\)
\(()(1,1)(1)(2)(2)\) \(\psi(\psi_1(0)+\omega^2)\) \(\omega^{\varepsilon_0+\omega^2}\)
\(()(1,1)(1)(2)(3)\) \(\psi(\psi_1(0)+\omega^3)\) \(\omega^{\varepsilon_0+\omega^3}\)
\(()(1,1)(1)(2,1)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)))\) \(\omega^{\varepsilon_0 2}\)
\(()(1,1)(1)(2,1)(1)(2,1)\) \(\psi(\psi_1(0)+\psi(\psi_1(0))2)\) \(\omega^{\varepsilon_0 3}\)
\(()(1,1)(1)(2,1)(2)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+1))\) \(\omega^{\omega^{\varepsilon_0+1}}\)
\(()(1,1)(1)(2,1)(2)(1)(2,1)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+1)+\psi(\psi_1(0)))\) \(\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}\)
\(()(1,1)(1)(2,1)(2)(1)(2,1)(1)(2,1)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+1)+\psi(\psi_1(0))2)\) \(\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0 2}\)
\(()(1,1)(1)(2,1)(2)(1)(2,1)(2)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+1)2)\) \(\omega^{\omega^{\varepsilon_0+1} 2}\)
\(()(1,1)(1)(2,1)(2)(2)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+2))\) \(\omega^{\omega^{\varepsilon_0+2}}\)
\(()(1,1)(1)(2,1)(2)(3)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+\omega))\) \(\omega^{\omega^{\varepsilon_0+\omega}}\)
\(()(1,1)(1)(2,1)(2)(3,1)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+\psi(\psi_1(0))))\) \(\omega^{\omega^{\varepsilon_0 2}}\)
\(()(1,1)(1,1)\) \(\psi(\psi_1(0)2)\) \(\varepsilon_1\)

\(\varepsilon_1\) ~ \(\varepsilon_{\varepsilon_0}\)

BMS BOCF NN
\(()(1,1)(1,1)\) \(\psi(\psi_1(0)2)\) \(\varepsilon_1\)
\(()(1,1)(1,1)(1)\) \(\psi(\psi_1(0)2+1)\) \(\omega^{\varepsilon_1+1}\)
\(()(1,1)(1,1)(1)(2,1)\) \(\psi(\psi_1(0)2+\psi(\psi_1(0)))\) \(\omega^{\varepsilon_1+\varepsilon_0}\)
\(()(1,1)(1,1)(1)(2,1)(2,1)\) \(\psi(\psi_1(0)2+\psi(\psi_1(0)2))\) \(\omega^{\varepsilon_1 2}\)
\(()(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)(3,1)\) \(\psi(\psi_1(0)2+\psi(\psi_1(0)2+\psi(\psi_1(0)2)))\) \(\omega^{\omega^{\varepsilon_1 2}}\)
\(()(1,1)(1,1)(1,1)\) \(\psi(\psi_1(0)3)\) \(\varepsilon_2\)
\(()(1,1)(2)\) \(\psi(\psi_1(1))\) \(\varepsilon_\omega\)
\(()(1,1)(2)(1)(2,1)(3)\) \(\psi(\psi_1(1)+\psi(\psi_1(1)))\) \(\omega^{\varepsilon_\omega 2}\)
\(()(1,1)(2)(1,1)\) \(\psi(\psi_1(1)+\psi_1(0))\) \(\varepsilon_{\omega+1}\)
\(()(1,1)(2)(1,1)(1,1)\) \(\psi(\psi_1(1)+\psi_1(0)2)\) \(\varepsilon_{\omega+2}\)
\(()(1,1)(2)(1,1)(2)\) \(\psi(\psi_1(1)2)\) \(\varepsilon_{\omega 2}\)
\(()(1,1)(2)(2)\) \(\psi(\psi_1(2))\) \(\varepsilon_{\omega^2}\)
\(()(1,1)(2)(3)\) \(\psi(\psi_1(\omega))\) \(\varepsilon_{\omega^\omega}\)
\(()(1,1)(2)(3)(4)\) \(\psi(\psi_1(\omega^\omega))\) \(\varepsilon_{\omega^{\omega^\omega}}\)
\(()(1,1)(2)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0))))\) \(\varepsilon_{\varepsilon_0}\)

\(\varepsilon_{\varepsilon_0}\) ~ \(\mathrm{CO} = \zeta_0\)

BMS BOCF NN
\(()(1,1)(2)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0))))\) \(\varepsilon_{\varepsilon_0}\)
\(()(1,1)(2)(1)(2,1)(3)\) \(\psi(\psi_1(1)+\psi(\psi_1(1)))\) \(\omega^{\varepsilon_\omega 2}\)
\(()(1,1)(2)(1,1)\) \(\psi(\psi_1(1)+\psi_1(0))\) \(\varepsilon_{\omega+1}\)
\(()(1,1)(2)(1,1)(1,1)\) \(\psi(\psi_1(1)+\psi_1(0)2)\) \(\varepsilon_{\omega+2}\)
\(()(1,1)(2)(1,1)(2)\) \(\psi(\psi_1(1)2)\) \(\varepsilon_{\omega 2}\)
\(()(1,1)(2)(2)\) \(\psi(\psi_1(2))\) \(\varepsilon_{\omega^2}\)
\(()(1,1)(2)(3)\) \(\psi(\psi_1(\omega))\) \(\varepsilon_{\omega^\omega}\)
\(()(1,1)(2)(3)(4)\) \(\psi(\psi_1(\omega^\omega))\) \(\varepsilon_{\omega^{\omega^\omega}}\)
\(()(1,1)(2)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0))))\) \(\varepsilon_{\varepsilon_0}\)
\(()(1,1)(2)(3,1)(1,1)\) \(\psi(\psi_1(\psi(\psi_1(0)))+\psi_1(0))\) \(\varepsilon_{\varepsilon_0+1}\)
\(()(1,1)(2)(3,1)(1,1)(2)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0)))2)\) \(\varepsilon_{\varepsilon_0 2}\)
\(()(1,1)(2)(3,1)(2)\) \(\psi(\psi_1(\psi(\psi_1(0))+1))\) \(\varepsilon_{\omega^{\varepsilon_0+1}}\)
\(()(1,1)(2)(3,1)(2)(1,1)(2)(3,1)(2)\) \(\psi(\psi_1(\psi(\psi_1(0))+1)2)\) \(\varepsilon_{\omega^{\varepsilon_0+1}2}\)
\(()(1,1)(2)(3,1)(2)(2)\) \(\psi(\psi_1(\psi(\psi_1(0))+2))\) \(\varepsilon_{\omega^{\varepsilon_0+2}}\)
\(()(1,1)(2)(3,1)(2)(3)\) \(\psi(\psi_1(\psi(\psi_1(0))+\omega))\) \(\varepsilon_{\omega^{\varepsilon_0+\omega}}\)
\(()(1,1)(2)(3,1)(2)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0))2)\) \(\varepsilon_{\omega^{\varepsilon_0 2}}\)
\(()(1,1)(2)(3,1)(3)\) \(\psi(\psi_1(\psi(\psi_1(0)+1))\) \(\varepsilon_{\omega^{\omega^{\varepsilon_0+1}}}\)
\(()(1,1)(2)(3,1)(3)(4)\) \(\psi(\psi_1(\psi(\psi_1(0)+\omega))\) \(\varepsilon_{\omega^{\omega^{\varepsilon_0+\omega}}}\)
\(()(1,1)(2)(3,1)(3)(4,1)\) \(\psi(\psi_1(\psi(\psi_1(0)+\psi(\psi_1(0))))\) \(\varepsilon_{\omega^{\omega^{\varepsilon_0 2}}}\)
\(()(1,1)(2)(3,1)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0)2))\) \(\varepsilon_{\varepsilon_1}\)
\(()(1,1)(2)(3,1)(4)\) \(\psi(\psi_1(\psi(\psi_1(1)))\) \(\varepsilon_{\varepsilon_\omega}\)
\(()(1,1)(2)(3,1)(4)(5,1)\) \(\psi(\psi_1(\psi(\psi_1(\psi(\psi_1(0)))))\) \(\varepsilon_{\varepsilon_{\varepsilon_0}}\)
\(()(1,1)(2,1)\) \(\psi(\psi_1(\psi_1(0)))\) \(\mathrm{CO} = \zeta_0\)

\(\zeta_0\) ~ \(\mathrm{FSO} = \Gamma_0 = \varphi(1,0,0)\)

\(\zeta_0\) ~ \(\mathrm{HCO} = \varphi(\omega,0)\)

Using \(\forall \alpha< \psi_1(\psi_2(0)) = \varepsilon_{\Omega+1}, \omega^{\Omega+\alpha} = \psi_1(\alpha)\) in BOCF.

BMS BOCF NN
\(()(1,1)(2,1)\) \(\psi(\Omega^2)\) \(\zeta_0\)
\(()(1,1)(2,1)(1)\) \(\psi(\Omega^2+1)\) \(\omega^{\zeta_0+1}\)
\(()(1,1)(2,1)(1)(2,1)\) \(\psi(\Omega^2+\psi(\Omega))\) \(\omega^{\zeta_0+\varepsilon_0}\)
\(()(1,1)(2,1)(1)(2,1)(3,1)\) \(\psi(\Omega^2+\psi(\Omega^2))\) \(\omega^{\zeta_0 2}\)
\(()(1,1)(2,1)(1,1)\) \(\psi(\Omega^2+\Omega)\) \(\varepsilon_{\zeta_0+1}\)
\(()(1,1)(2,1)(1,1)(2)\) \(\psi(\Omega^2+\Omega\omega))\) \(\varepsilon_{\zeta_0+\omega}\)
\(()(1,1)(2,1)(1,1)(2)(3,1)(4,1)\) \(\psi(\Omega^2+\Omega\psi(\Omega^2))\) \(\varepsilon_{\zeta_0 2}\)
\(()(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)\) \(\psi(\Omega^2+\Omega\psi(\Omega^2+\Omega))\) \(\varepsilon_{\varepsilon_{\zeta_0+1}}\)
\(()(1,1)(2,1)(1,1)(2,1)\) \(\psi(\Omega^22)\) \(\zeta_1\)
\(()(1,1)(2,1)(1,1)(2,1)(1,1)\\(2)(3,1)(4,1)(3,1)(4,1)\) \(\psi(\Omega^2 2+\Omega\psi(\Omega^2 2))\) \(\varepsilon_{\zeta_1 2}\)
\(()(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)\) \(\psi(\Omega^23)\) \(\zeta_2\)
\(()(1,1)(2,1)(2)\) \(\psi(\Omega^2\omega)\) \(\zeta_\omega\)
\(()(1,1)(2,1)(2)(1,1)(2,1)\) \(\psi(\Omega^2\omega+\Omega^2)\) \(\zeta_{\omega+1}\)
\(()(1,1)(2,1)(2)(1,1)(2,1)(2)\) \(\psi(\Omega^2\omega 2)\) \(\zeta_{\omega 2}\)
\(()(1,1)(2,1)(2)(2)\) \(\psi(\Omega^2\omega^2)\) \(\zeta_{\omega^2}\)
\(()(1,1)(2,1)(2)(3)\) \(\psi(\Omega^2\omega^\omega)\) \(\zeta_{\omega^\omega}\)
\(()(1,1)(2,1)(2)(3,1)\) \(\psi(\Omega^2\psi(\Omega))\) \(\zeta_{\varepsilon_0}\)
\(()(1,1)(2,1)(2)(3,1)(4,1)\) \(\psi(\Omega^2\psi(\Omega^2))\) \(\zeta_{\zeta_0}\)
\(()(1,1)(2,1)(2,1)\) \(\psi(\Omega^3)\) \(\eta_0\)
\(()(1,1)(2,1)(2,1)(1,1)\) \(\psi(\Omega^3+\Omega)\) \(\varepsilon_{\eta_0+1}\)
\(()(1,1)(2,1)(2,1)(1,1)(2,1)\) \(\psi(\Omega^3+\Omega^2)\) \(\zeta_{\eta_0+1}\)
\(()(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)\) \(\psi(\Omega^32)\) \(\eta_1\)
\(()(1,1)(2,1)(2,1)(2)\) \(\psi(\Omega^3\omega)\) \(\eta_\omega\)
\(()(1,1)(2,1)(2,1)(2)(3,1)(4,1)(4,1)\) \(\psi(\Omega^3\psi(\Omega^3))\) \(\eta_{\eta_0}\)
\(()(1,1)(2,1)(2,1)(2,1)\) \(\psi(\Omega^4)\) \(\varphi(4,0)\)
\(()(1,1)(2,1)(3)\) \(\psi(\Omega^\omega)\) \(\mathrm{HCO} = \varphi(\omega,0)\)

\(\varphi(\omega,0)\) ~ \(\mathrm{FSO} = \Gamma_0 = \varphi(1,0,0)\)

BMS BOCF NN
\(()(1,1)(2,1)(3)\) \(\psi(\Omega^\omega)\) \(\varphi(\omega,0)\)
\(()(1,1)(2,1)(3)(1,1)\) \(\psi(\Omega^\omega+\Omega)\) \(\varepsilon_{\varphi(\omega,0)+1}\)
\(()(1,1)(2,1)(3)(1,1)(2,1)\) \(\psi(\Omega^\omega+\Omega^2)\) \(\zeta_{\varphi(\omega,0)+1}\)
\(()(1,1)(2,1)(3)(1,1)(2,1)(2,1)\) \(\psi(\Omega^\omega+\Omega^3)\) \(\eta_{\varphi(\omega,0)+1}\)
\(()(1,1)(2,1)(3)(1,1)(2,1)(3)\) \(\psi(\Omega^\omega 2)\) \(\varphi(\omega,1)\)
\(()(1,1)(2,1)(3)(2)\) \(\psi(\Omega^\omega\omega)\) \(\varphi(\omega,\omega)\)
\(()(1,1)(2,1)(3)(2)(3,1)\) \(\psi(\Omega^\omega\psi(\Omega))\) \(\varphi(\omega,\varepsilon_0)\)
\(()(1,1)(2,1)(3)(2)(3,1)(4,1)\) \(\psi(\Omega^\omega\psi(\Omega^2))\) \(\varphi(\omega,\zeta_0)\)
\(()(1,1)(2,1)(3)(2)(3,1)(4,1)(5)\) \(\psi(\Omega^\omega\psi(\Omega^\omega))\) \(\varphi(\omega,\varphi(\omega,0))\)
\(()(1,1)(2,1)(3)(2,1)\) \(\psi(\Omega^{\omega+1})\) \(\varphi(\omega+1,0)\)
\(()(1,1)(2,1)(3)(2,1)(1,1)(2,1)(3)(2,1)\) \(\psi(\Omega^{\omega+1}2)\) \(\varphi(\omega+1,1)\)
\(()(1,1)(2,1)(3)(2,1)(2)\) \(\psi(\Omega^{\omega+1}\omega)\) \(\varphi(\omega+1,\omega)\)
\(()(1,1)(2,1)(3)(2,1)(2)(3,1)(4,1)(5)(4,1)\) \(\psi(\Omega^{\omega+1}\psi(\Omega^{\omega+1}))\) \(\varphi(\omega+1,\varphi(\omega+1,0))\)
\(()(1,1)(2,1)(3)(2,1)(2,1)\) \(\psi(\Omega^{\omega+2})\) \(\varphi(\omega+2,0)\)
\(()(1,1)(2,1)(3)(2,1)(3)\) \(\psi(\Omega^{\omega 2})\) \(\varphi(\omega 2,0)\)
\(()(1,1)(2,1)(3)(3)\) \(\psi\left(\Omega^{\omega^2}\right)\) \(\varphi(\omega^2,0)\)
\(()(1,1)(2,1)(3)(4)\) \(\psi\left(\Omega^{\omega^\omega}\right)\) \(\varphi(\omega^\omega,0)\)
\(()(1,1)(2,1)(3)(4,1)\) \(\psi\left(\Omega^{\psi(\Omega)}\right)\) \(\varphi(\varepsilon_0,0)\)
\(()(1,1)(2,1)(3)(4,1)(5,1)\) \(\psi\left(\Omega^{\psi(\Omega^2)}\right)\) \(\varphi(\zeta_0,0)\)
\(()(1,1)(2,1)(3)(4,1)(5,1)(6)\) \(\psi\left(\Omega^{\psi(\Omega^\omega)}\right)\) \(\varphi(\varphi(\omega,0),0)\)
\(()(1,1)(2,1)(3)(4,1)(5,1)(6)(7,1)(8,1)\) \(\psi\left(\Omega^{\psi\left(\Omega^{\psi(\Omega^2)}\right)}\right)\) \(\varphi(\varphi(\zeta_0,0),0)\)
\(()(1,1)(2,1)(3,1)\) \(\psi(\Omega^\Omega)\) \(\mathrm{FSO} = \Gamma_0\)

next part